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This paper discusses resonant cavities and their potential

sound pressure output when they are modulated hydrodynamically.

Rough calculations show that in the frequency range of 10 to

100 Hz source levels in excess of 200 dB re 1 aPa should be

achievable. Experimental data from three suboptimum devices

showed source levels of 182 dB at 16.6 and 50 Hz and 168 dB at

34.5 Hz. It is expected that with appropriate designs one can

achieve greater than 200 dB from 10 to 100 Hz with fairly
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small, lightweight devices. Further, with innovative designs if a(

one should be able to obtain frequercy diversity and perhaps modu

broad bandwidth with a single device. : urc

th s

resor

I. INTRODUCTION reduc

Sound generation is known to be inefficient when the radiating device is a~e s

small compared to a wavelength of the frequency one wishes to generate. netes

Production of high sound pressure levels at low frequency from devices small shows

compared to a wavelength requires large amounts of acoustic power. Fo, example, of th i

to produce 200 dB re 1 #Pa at 10 Hz requires 1 kW of acoustic power and a volume bulbl,

displacement of 104 cm3 . With efficiencies of the order of 1% for many low- bubblf

frequency devices, the power amplifier requirement would be about 100 kW. If rms cil

one could develop a suitable tow-powered source to derive power primarily from a Lthe r.

ship's propulsion system, the power might be available without having to provide F s.

extra generating equipment on-board the vessel. A vessel such as the U.S. Naval rinFif

Ship Stalwart (TAGOS-1) has a power plant that delivers 3,200 brake horsepower pulsat

or about 2 MW of power. This vessel would be capable of towing such a device pressu

with about 5% of its power going to sound generation. A highly resonant device mainta

might do even better. Here we will consider resonant air cavity devices and resona

give some results from theory and experiment. .%88

II. SOME CONSIDERATIONS FOR PULSATING SPHERES AND RESONANT BUBBLES III.

From the previous paper in this meeting by Timme, Young, and Blue, let ur We

examine Fig. 1. At 10 Hz a spherical source driven uniformly over its area Researc

would require 1 kW of acoustic power in the water to achieve a sound pressure the res

level of 200 dB re 1 #Pa. The question now is whether or not that source level sources

S resnaE



is achievable by causing the flow past a 10-Hz resonant bubble to sinusoidally

modulate the pressure field in the fluid surrounding the bubble. A candidate

source design that we examined previously1 is shown schematically in Fig. 2. In

this case we attached a rubber membrane to a rigid hemisphere to produce the

resonant bubble or air cavity. The use of a rigid hemisphere was intended to

reduce multi-pole excitation of the resonant cavity. Our objective and approach

are shown in Fig. 3. Let us now examine the size and volume displacement

necessary to produce a 200-dB source level from a resonant bubble. Figure 4

shows Minnaert's equation2 for a resonant gas bubble in water. The relationship

of the sound pressure produced in the water to the volume displacement of the

bubble is given in Fig. 5 for the case of an omnidirectional source. Assume the

bubble pulsates linearly with a change of +5% in its resonant radius; i.e., the

irms change in the resonant radius is 3.5%. From this assumption we calculate

the rsm volume displacement 6V0 as shown in Fig. 6. Combining equations in

Figs. 4, 5, and 6 we obtai the acoustic pressure referenced to 1 meter as shown

in Fig. 7. Here we see that a 10-Hz resonant bubble at a depth of 9.8 m

pulsating at 3.5% rms of the resonant radius (r° = 0.46 m) will give a sound

pressure level of 203 dB re 1 sPa at 1 m. To obtain 200 dB at 100 Hz

maintaining the 3.5% rms displacement criteria one would have to place the

resonant bubble at a depth of 62.3 m. Its radius at that depth would be

0.088 m.

III. SOME RESULTS FROM SUB-OPTIMUM DEVICES

We have tested three different prototype tow-powered sources at the Naval

Research Laboratory. None of the prototypes is close to being optimum, however,

the results do show that producing fairly high sound pressure levels from such

sources is not that difficult. Figure 8 shows the concept for a 16.6-Hz

resonant source. The salient features here are the flow modulator, plastic



shroud, and rigid hemisphere. For this device and for a 50-Hz resonant device tt

that we built, the stiffness and loss in the membrane as well as the design of devi

the flow modulators were factors in making the device suboptimum. Figures 9 and frq

10 show results from these two devices. Source levels of - 182 dB were obtained

at a tow speed of 1.85 km/hr (1 knot) for both of these devices. Lack of REFE

linearity with tow speed causes us some concern. Figure 11 shows the devices Ij I

were omnidirectional. No measurements of harmonic distortion were made. Figure

12 shows another concept for a tow-powered source that was tested. This device 2

was modeled by LT Semper for his Master's thesis3 in mechanical engineering at P

the University of Central Florida. This device corrects a deficiency of the T

first devices by providing a variable speed motor to control the modulation 1

frequency instead of depending on tuning the flow modulator to rotate at the

proper resonant rate. We will not go into detail about the modeling but it :1'

involves the elastic moduli of the elastomeric membrane, adds the radiation mass

in an ad hoc manner, and calculates the peak modulation pressure as a function

of tow speed. Figure 13 shows the calculated source levels as a function of the

peak modulation pressure. Since the model used is a linear one, we expect the

linear response shown here. For a peak modulation pressure of 0.1 psi theory

predicts a sound pressure level of 168 dB at 34.5 Hz. Figure 14 shows the

experimental results which agree well at resonance with the theory after

selection of appropriate parameters to put into the theory.

IV. DISCUSSION

The results presented here were meant to stimulate thought on tow- or flow-

powered devices. We have shown with very crude devices that source levels of

170 to 190 dB are easily obtainable. Our belief is that source levels greater

I I I1/



than 200 dB can be obtained from 10 to 100 Hz with rather small, lightweight

devices and that with innovative design we can develop devices that have

frequency diversity and maybe even fairly broad bandwidth.
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FIGURE CAPTIONS

Fig. 1 Source level and acoustic power radiated from a harmonically pulsating

sphere with ka << 1.

Fig. 2 Tow-powered, low-frequency sound source.

Fig. 3 Objective and approach in creating a tow-powered, low-frequency sound

source.

Fig. 4 Minnaert's equation for a resonant bubble in water.

Fig. 5 Sound pressure referenced back to 1 m from an omnidirectional source

with volume displacement 5V.

Fig. 6 Volume displacement for a resonant bubble with 3.5% rms oscillation

about r.

Fig. 7 Sound pressure level re lpPa for a 10-Hz resonant bubble at 9.8-m

depth pulsating 3.5% r0 rms (r = 0.46m).

Fig. 8 Flow modulator.

Fig. 9 Sound pressure level vs tow speed.

Fig. 10 Sound pressure level vs to% 6peed

Fig. 11 Directivity of 16.6 and 50 Hz sources.

Fig. 12 Tow-powered sound source.

Fig. 13 Effects of the magnitude of forcing.

Fig. 14 Sound pressure level vs frequency.
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0 = resonant frequency

r,.= radius at resonance

7 =adiabatic constant

P h =hydrostatic pressure

p density

r hr .
o o 3.26 9.8

h = water depth in meters

r0in meters



w = angular frequency

p = density

5V = volume displacement



Volume of resonant bubble

0 3 3

0.457r



4. 95x 10 + 9. 81

SPL= 213.9 -20 log f + 30 log (h +98] dB re 1 #Pa

For f 10 Hz and h=8.8 m

SPL =203 dB
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